Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37339804

RESUMEN

The identification of condition-specific gene sets from transcriptomic experiments is important to reveal regulatory and signaling mechanisms associated with a given cellular response. Statistical methods of differential expression analysis, designed to assess individual gene variations, have trouble highlighting modules of small varying genes whose interaction is essential to characterize phenotypic changes. To identify these highly informative gene modules, several methods have been proposed in recent years, but they have many limitations that make them of little use to biologists. Here, we propose an efficient method for identifying these active modules that operates on a data embedding combining gene expressions and interaction data. Applications carried out on real datasets show that our method can identify new groups of genes of high interest corresponding to functions not revealed by traditional approaches. Software is available at https://github.com/claudepasquier/amine.


Asunto(s)
Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Redes Reguladoras de Genes/genética , Perfilación de la Expresión Génica/métodos , Transducción de Señal/genética
2.
Gut ; 72(4): 722-735, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36882214

RESUMEN

OBJECTIVE: Intercellular communication within pancreatic ductal adenocarcinoma (PDAC) dramatically contributes to metastatic processes. The underlying mechanisms are poorly understood, resulting in a lack of targeted therapy to counteract stromal-induced cancer cell aggressiveness. Here, we investigated whether ion channels, which remain understudied in cancer biology, contribute to intercellular communication in PDAC. DESIGN: We evaluated the effects of conditioned media from patient-derived cancer-associated fibroblasts (CAFs) on electrical features of pancreatic cancer cells (PCC). The molecular mechanisms were deciphered using a combination of electrophysiology, bioinformatics, molecular and biochemistry techniques in cell lines and human samples. An orthotropic mouse model where CAF and PCC were co-injected was used to evaluate tumour growth and metastasis dissemination. Pharmacological studies were carried out in the Pdx1-Cre, Ink4afl/fl LSL-KrasG12D (KICpdx1) mouse model. RESULTS: We report that the K+ channel SK2 expressed in PCC is stimulated by CAF-secreted cues (8.84 vs 2.49 pA/pF) promoting the phosphorylation of the channel through an integrin-epidermal growth factor receptor (EGFR)-AKT (Protein kinase B) axis. SK2 stimulation sets a positive feedback on the signalling pathway, increasing invasiveness in vitro (threefold) and metastasis formation in vivo. The CAF-dependent formation of the signalling hub associating SK2 and AKT requires the sigma-1 receptor chaperone. The pharmacological targeting of Sig-1R abolished CAF-induced activation of SK2, reduced tumour progression and extended the overall survival in mice (11.7 weeks vs 9.5 weeks). CONCLUSION: We establish a new paradigm in which an ion channel shifts the activation level of a signalling pathway in response to stromal cues, opening a new therapeutic window targeting the formation of ion channel-dependent signalling hubs.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt , Carcinogénesis , Transformación Celular Neoplásica , Transducción de Señal , Neoplasias Pancreáticas
3.
Cancers (Basel) ; 14(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35954400

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of all cancers, having one of the lowest five-year survival rates. One of its hallmarks is a dense desmoplastic stroma consisting in the abnormal accumulation of extracellular matrix (ECM) components, especially Collagen I. This highly fibrotic stroma embeds the bulk cancer (parenchymal) cells (CPCs), cancer stem cells (CSCs) and the main producers of the stromal reaction, the Cancer Associated Fibroblasts (CAFs). Little is known about the role of the acellular ECM in the interplay of the CAFs with the different tumor cell types in determining their phenotypic plasticity and eventual cell fate. METHODS: Here, we analyzed the role of ECM collagen I in modulating the effect of CAF-derived signals by incubating PDAC CPCs and CSCs grown on ECM mimicking early (low collagen I levels) and late (high collagen I levels) stage PDAC stroma with conditioned medium from primary cultured CAFs derived from patients with PDAC in a previously described three-dimensional (3D) organotypic model of PDAC. RESULTS: We found that CAFs (1) reduced CPC growth while favoring CSC growth independently of the ECM; (2) increased the invasive capacity of only CPCs on the ECM mimicking the early tumor; and (3) favored vasculogenic mimicry (VM) especially of the CSCs on the ECM mimicking an early tumor. CONCLUSIONS: We conclude that the CAFs and acellular stromal components interact to modulate the tumor behaviors of the PDAC CPC and CSC cell types and drive metastatic progression by stimulating the phenotypic characteristics of each tumor cell type that contribute to metastasis.

5.
Rev Physiol Biochem Pharmacol ; 183: 157-176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-32767122

RESUMEN

The intracellular Ca2+ concentration is mainly controlled by Ca2+ channels. These channels form complexes with K+ channels, which function to amplify Ca2+ flux. In cancer cells, voltage-gated/voltage-dependent Ca2+ channels and non-voltage-gated/voltage-independent Ca2+ channels have been reported to interact with K+ channels such as Ca2+-activated K+ channels and voltage-gated K+ channels. These channels are activated by an increase in cytosolic Ca2+ concentration or by membrane depolarization, which induces membrane hyperpolarization, increasing the driving force for Ca2+ flux. These complexes, composed of K+ and Ca2+ channels, are regulated by several molecules including lipids (ether lipids and cholesterol), proteins (e.g. STIM), receptors (e.g. S1R/SIGMAR1), and peptides (e.g. LL-37) and can be targeted by monoclonal antibodies, making them novel targets for cancer research.


Asunto(s)
Neoplasias , Canales de Potasio con Entrada de Voltaje , Calcio/metabolismo , Canales de Calcio/metabolismo , Humanos , Lípidos , Neoplasias/tratamiento farmacológico , Potasio/metabolismo , Canales de Potasio/metabolismo
6.
Front Physiol ; 12: 736585, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34737711

RESUMEN

Hereditary Xerocytosis, a rare hemolytic anemia, is due to gain of function mutations in PIEZO1, a non-selective cation channel activated by mechanical stress. How these PIEZO1 mutations impair channel function and alter red blood cell (RBC) physiology, is not completely understood. Here, we report the characterization of mutations in the N-terminal part of the protein (V598M, F681S and the double mutation G782S/R808Q), a part of the channel that was subject of many investigations to decipher its role in channel gating. Our data show that the electrophysiological features of these PIEZO1 mutants expressed in HEK293T cells are different from previously characterized PIEZO1 mutations that are located in the pore or at the C-terminal extracellular domain of the protein. Although RBC with PIEZO1 mutations showed a dehydrated phenotype, the activity of V598M, F681S or R808Q in response to stretch was not significantly different from the WT channels. In contrast, the G782S mutant showed larger currents compared to the WT PIEZO1. Interestingly, basal activity of all the mutated channels was not significantly altered at the opposite of what was expected according to the decreased water and cation contents of resting RBC. In addition, the features of mutant PIEZO1 expressed in HEK293 cells do not always correlate with the observation in RBC where PIEZO1 mutations induced a cation leak associated with an increased conductance. Our work emphasizes the role of the membrane environment in PIEZO1 activity and the need to characterize RBC permeability to assess pathogenicity to PIEZO1 mutants associated with erythrocyte diseases.

7.
Front Pharmacol ; 11: 525020, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117152

RESUMEN

Increasing evidence point out the important roles of ion channels in the physiopathology of cancers, so that these proteins are now considered as potential new therapeutic targets and biomarkers in this disease. Indeed, ion channels have been largely described to participate in many hallmarks of cancers such as migration, invasion, proliferation, angiogenesis, and resistance to apoptosis. At the molecular level, the development of cancers is characterised by alterations in transduction pathways that control cell behaviors. However, the interactions between ion channels and cancer-related signaling pathways are poorly understood so far. Nevertheless, a limited number of reports have recently addressed this important issue, especially regarding the interaction between ion channels and one of the main driving forces for cancer development: the Wnt/ß-catenin signaling pathway. In this review, we propose to explore and discuss the current knowledge regarding the interplay between ion channels and the Wnt/ß-catenin signaling pathway in cancers.

8.
Trends Mol Med ; 26(3): 243-245, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31983612

RESUMEN

The identification of senolytics, compounds that eliminate senescent cells, is presently a key priority given their therapeutic promise in cancer and aging-associated diseases. Two recent papers by Triana-Martínez et al. and Guerrero et al. report the senolytic activity of cardiac glycosides (CGs) and their efficacy in these pathophysiological contexts.


Asunto(s)
Envejecimiento/efectos de los fármacos , Glicósidos Cardíacos/uso terapéutico , Neoplasias/tratamiento farmacológico , Senescencia Celular/efectos de los fármacos , Humanos
9.
Front Neurosci ; 13: 1186, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31780884

RESUMEN

The sigma-1 receptor (σ1R) is an endoplasmic reticulum (ER)-resident chaperone protein that acts like an inter-organelle signaling modulator. Among its several functions such as ER lipid metabolisms/transports and indirect regulation of genes transcription, one of its most intriguing feature is the ability to regulate the function and trafficking of a variety of functional proteins. To date, and directly relevant to the present review, σ1R has been found to regulate both voltage-gated ion channels (VGICs) belonging to distinct superfamilies (i.e., sodium, Na+; potassium, K+; and calcium, Ca2+ channels) and non-voltage-gated ion channels. This regulatory function endows σ1R with a powerful capability to fine tune cells' electrical activity and calcium homeostasis-a regulatory power that appears to favor cell survival in pathological contexts such as stroke or neurodegenerative diseases. In this review, we present the current state of knowledge on σ1R's role in the regulation of cellular electrical activity, and how this seemingly adaptive function can shift cell homeostasis and contribute to the development of very distinct chronic pathologies such as psychostimulant abuse and tumor cell growth in cancers.

12.
Proc Natl Acad Sci U S A ; 114(16): 4159-4164, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28373572

RESUMEN

The K+ channel KCNQ1 has been proposed as a tumor suppressor in colorectal cancer (CRC). We investigated the molecular mechanisms regulating KCNQ1:ß-catenin bidirectional interactions and their effects on CRC differentiation, proliferation, and invasion. Molecular and pharmacologic approaches were used to determine the influence of KCNQ1 expression on the Wnt/ß-catenin signaling and epithelial-to-mesenchymal transition (EMT) in human CRC cell lines of varying stages of differentiation. The expression of KCNQ1 was lost with increasing mesenchymal phenotype in poorly differentiated CRC cell lines as a consequence of repression of the KCNQ1 promoter by ß-catenin:T-cell factor (TCF)-4. In well-differentiated epithelial CRC cell lines, KCNQ1 was localized to the plasma membrane in a complex with ß-catenin and E-cadherin. The colocalization of KCNQ1 with adherens junction proteins was lost with increasing EMT phenotype. ShRNA knock-down of KCNQ1 caused a relocalization of ß-catenin from the plasma membrane and a loss of epithelial phenotype in CRC spheroids. Overexpression of KCNQ1 trapped ß-catenin at the plasma membrane, induced a patent lumen in CRC spheroids, and slowed CRC cell invasion. The KCNQ1 ion channel inhibitor chromanol 293B caused membrane depolarization, redistribution of ß-catenin into the cytosol, and a reduced transepithelial electrical resistance, and stimulated CRC cell proliferation. Analysis of human primary CRC tumor patient databases showed a positive correlation between KCNQ1:KCNE3 channel complex expression and disease-free survival. We conclude that the KCNQ1 ion channel is a target gene and regulator of the Wnt/ß-catenin pathway, and its repression leads to CRC cell proliferation, EMT, and tumorigenesis.


Asunto(s)
Diferenciación Celular , Movimiento Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Canal de Potasio KCNQ1/metabolismo , beta Catenina/metabolismo , Animales , Apoptosis , Carcinogénesis , Proliferación Celular , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal , Humanos , Canal de Potasio KCNQ1/genética , Masculino , Invasividad Neoplásica , Pronóstico , Regiones Promotoras Genéticas , Ratas Sprague-Dawley , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/genética
13.
Adv Exp Med Biol ; 964: 63-77, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28315265

RESUMEN

SigmaR1 is a multitasking chaperone protein which has mainly been studied in CNS physiological and pathophysiological processes such as pain, memory, neurodegenerative diseases (amyotrophic lateral sclerosis , Parkinson's and Alzheimer's diseases, retinal neurodegeneration ), stroke and addiction . Strikingly, G-protein and ion channels are the main client protein fami lies of this atypical chaperone and the recent advances that have been performed for the last 10 years demonstrate that SigmaR1 is principally activated following tissue injury and disease development to promote cell survival. In this chapter, we synthesize the data enhancing our comprehension of the interaction between SigmaR1 and ion channels and the unexpected consequences of such functional coupling in cancer development. We also describe a model in which the pro-survival functions of SigmaR1 observed in CNS pathologies are hijacked by cancer cells to shape their electrical signature and behavior in response to the tumor microenvironment .


Asunto(s)
Canales Iónicos/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Receptores sigma/metabolismo , Animales , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Microambiente Tumoral/fisiología , Receptor Sigma-1
15.
Oncotarget ; 7(24): 36168-36184, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27102434

RESUMEN

BACKGROUND: Barely 10-20% of patients with metastatic colorectal cancer (mCRC) receive a clinical benefit from the use of anti-EGFR monoclonal antibodies (mAbs). We hypothesized that this could depends on their efficiency to reduce Store Operated Calcium Entry (SOCE) that are known to enhance cancer cells. RESULTS: In the present study, we demonstrate that SOCE promotes migration of colon cancer cell following the formation of a lipid raft ion channel complex composed of TRPC1/Orai1 and SK3 channels. Formation of this complex is stimulated by the phosphorylation of the reticular protein STIM1 by EGF and activation of the Akt pathway. Our data show that, in a positive feedback loop SOCE activates both Akt pathway and SK3 channel activity which lead to SOCE amplification. This amplification occurs through the activation of Rac1/Calpain mediated by Akt. We also show that Anti-EGFR mAbs can modulate SOCE and cancer cell migration through the Akt pathway. Interestingly, the alkyl-lipid Ohmline, which we previously showed to be an inhibitor of SK3 channel, can dissociated the lipid raft ion channel complex through decreased phosphorylation of Akt and modulation of mAbs action. CONCLUSIONS: This study demonstrates that the inhibition of the SOCE-dependent colon cancer cell migration trough SK3/TRPC1/Orai1 channel complex by the alkyl-lipid Ohmline may be a novel strategy to modulate Anti-EGFR mAb action in mCRC.


Asunto(s)
Calcio/metabolismo , Movimiento Celular/fisiología , Proteína ORAI1/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales Catiónicos TRPC/metabolismo , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Movimiento Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/inmunología , Receptores ErbB/metabolismo , Glucolípidos/farmacología , Células HCT116 , Humanos , Immunoblotting , Microdominios de Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
16.
Cell Calcium ; 59(4): 198-207, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27020659

RESUMEN

Migration capacity is essential for dendritic cells (DCs) to present antigen to T cells for the induction of immune response. The DC migration is supposed to be a calcium-dependent process, while not fully understood. Here, we report a role of the KCa3.1/IK1/SK4 channels in the migration capacity of both immature (iDC) and mature (mDC) human CD14(+)-derived DCs. KCa3.1 channels were shown to control the membrane potential of human DC and the Ca(2+) entry, which is directly related to migration capacities. The expression of migration marker such as CCR5 and CCR7 was modified in both types of DCs by TRAM-34 (100nM). But, only the migration of iDC was decreased by use of both TRAM-34 and KCa3.1 siRNA. Confocal analyses showed a close localization of CCR5 with KCa3.1 in the steady state of iDC. Finally, the implication of KCa3.1 seems to be limited to the migration capacities as T cell activation of DCs appeared unchanged. Altogether, these results demonstrated that KCa3.1 channels have a pro-migratory effect on iDC migration. Our findings suggest that KCa3.1 in human iDC play a major role in their migration and constitute an attractive target for the cell therapy optimization.


Asunto(s)
Calcio/metabolismo , Movimiento Celular , Células Dendríticas/citología , Células Dendríticas/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Movimiento Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Pirazoles/farmacología
17.
Cancer Res ; 76(3): 607-18, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26645564

RESUMEN

The sigma 1 receptor (Sig1R) is a stress-activated chaperone that regulates ion channels and is associated with pathologic conditions, such as stroke, neurodegenerative diseases, and addiction. Aberrant expression levels of ion channels and Sig1R have been detected in tumors and cancer cells, such as myeloid leukemia and colorectal cancer, but the link between ion channel regulation and Sig1R overexpression during malignancy has not been established. In this study, we found that Sig1R dynamically controls the membrane expression of the human voltage-dependent K(+) channel human ether-à-go-go-related gene (hERG) in myeloid leukemia and colorectal cancer cell lines. Sig1R promoted the formation of hERG/ß1-integrin signaling complexes upon extracellular matrix stimulation, triggering the activation of the PI3K/AKT pathway. Consequently, the presence of Sig1R in cancer cells increased motility and VEGF secretion. In vivo, Sig1R expression enhanced the aggressiveness of tumor cells by potentiating invasion and angiogenesis, leading to poor survival. Collectively, our findings highlight a novel function for Sig1R in mediating cross-talk between cancer cells and their microenvironment, thus driving oncogenesis by shaping cellular electrical activity in response to extracellular signals. Given the involvement of ion channels in promoting several hallmarks of cancer, our study also offers a potential strategy to therapeutically target ion channel function through Sig1R inhibition.


Asunto(s)
Neoplasias/metabolismo , Neoplasias/patología , Receptores sigma/biosíntesis , Animales , Adhesión Celular/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiología , Movimiento Celular/fisiología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Células HCT116 , Células HEK293 , Humanos , Células K562 , Ratones , Células 3T3 NIH , Invasividad Neoplásica , Neoplasias/genética , Receptores sigma/genética , Transducción de Señal , Receptor Sigma-1
18.
Blood ; 126(11): 1273-80, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26148990

RESUMEN

The Gardos channel is a Ca(2+)-sensitive, intermediate conductance, potassium selective channel expressed in several tissues including erythrocytes and pancreas. In normal erythrocytes, it is involved in cell volume modification. Here, we report the identification of a dominantly inherited mutation in the Gardos channel in 2 unrelated families and its association with chronic hemolysis and dehydrated cells, also referred to as hereditary xerocytosis (HX). The affected individuals present chronic anemia that varies in severity. Their red cells exhibit a panel of various shape abnormalities such as elliptocytes, hemighosts, schizocytes, and very rare stomatocytic cells. The missense mutation concerns a highly conserved residue among species, located in the region interacting with Calmodulin and responsible for the channel opening and the K(+) efflux. Using 2-microelectrode experiments on Xenopus oocytes and patch-clamp electrophysiology on HEK293 cells, we demonstrated that the mutated channel exhibits a higher activity and a higher Ca(2+) sensitivity compared with the wild-type (WT) channel. The mutated channel remains sensitive to inhibition suggesting that treatment of this type of HX by a specific inhibitor of the Gardos channel could be considered. The identification of a KCNN4 mutation associated with chronic hemolysis constitutes the first report of a human disease caused by a defect of the Gardos channel.


Asunto(s)
Anemia Hemolítica Congénita/genética , Hidropesía Fetal/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Proteínas Mutantes/genética , Mutación Missense , Adulto , Secuencia de Aminoácidos , Anemia Hemolítica Congénita/sangre , Animales , Preescolar , Eritrocitos Anormales/metabolismo , Femenino , Genes Dominantes , Células HEK293 , Humanos , Hidropesía Fetal/sangre , Técnicas In Vitro , Lactante , Recién Nacido , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/sangre , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/química , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/sangre , Proteínas Mutantes/química , Oocitos/metabolismo , Fragilidad Osmótica , Técnicas de Placa-Clamp , Linaje , Embarazo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Xenopus laevis
19.
J Biol Chem ; 289(46): 32353-32363, 2014 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-25266722

RESUMEN

The sigma-1 receptor is an endoplasmic reticulum chaperone protein, widely expressed in central and peripheral tissues, which can translocate to the plasma membrane and modulate the function of various ion channels. The human ether-à-go-go-related gene encodes hERG, a cardiac voltage-gated K(+) channel that is abnormally expressed in many human cancers and is known to interact functionally with the sigma-1 receptor. Our aim was to investigate the nature of the interaction between the sigma-1 receptor and hERG. We show that the two proteins can be co-isolated from a detergent extract of stably transfected HEK-293 cells, consistent with a direct interaction between them. Atomic force microscopy imaging of the isolated protein confirmed the direct binding of the sigma-1 receptor to hERG monomers, dimers, and tetramers. hERG dimers and tetramers became both singly and doubly decorated by sigma-1 receptors; however, hERG monomers were only singly decorated. The distribution of angles between pairs of sigma-1 receptors bound to hERG tetramers had two peaks, at ∼90 and ∼180° in a ratio of ∼2:1, indicating that the sigma-1 receptor interacts with hERG with 4-fold symmetry. Homogeneous time-resolved fluorescence (HTRF®) allowed the detection of the interaction between the sigma-1 receptor and hERG within the plane of the plasma membrane. This interaction was resistant to sigma ligands, but was decreased in response to cholesterol depletion of the membrane. We suggest that the sigma-1 receptor may bind to hERG in the endoplasmic reticulum, aiding its assembly and trafficking to the plasma membrane.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Receptores sigma/metabolismo , Membrana Celular/metabolismo , Movimiento Celular , Colesterol/metabolismo , ADN Complementario/metabolismo , Canal de Potasio ERG1 , Retículo Endoplásmico/metabolismo , Epítopos/metabolismo , Células HEK293 , Humanos , Iones , Ligandos , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Transfección , Receptor Sigma-1
20.
Front Physiol ; 4: 175, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23882221

RESUMEN

Originally mistaken as an opioid receptor, the sigma-1 receptor (Sig1R) is a ubiquitous membrane protein that has been involved in many cellular processes. While the precise function of Sig1R has long remained mysterious, recent studies have shed light on its role and the molecular mechanisms triggered. Sig1R is in fact a stress-activated chaperone mainly associated with the ER-mitochondria interface that can regulate cell survival through the control of calcium homeostasis. Sig1R functionally regulates ion channels belonging to various molecular families and it has thus been involved in neuronal plasticity and central nervous system diseases. Interestingly, Sig1R is frequently expressed in tumors but its function in cancer has not been yet clarified. In this review, we discuss the current understanding of Sig1R. We suggest herein that Sig1R shapes cancer cell electrical signature upon environmental conditions. Thus, Sig1R may be used as a novel therapeutic target to specifically abrogate pro-invasive functions of ion channels in cancer tissue.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...